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1. INTRODUCTION 
 
The fully nonlinear wave/body interaction problem is usually solved through a time stepping technique 
based on the potential flow theory.  At each time step, the potential is commonly found by using the 
boundary element method (BEM) or the finite element method (FEM). The BEM divides only the boundary 
of the fluid domain into small panels. Early examples of the BEM for two dimensional (2D) flow include the 
work by Longuet-Higgins & Cokelet (1976), Faltinsen (1977), Vinje & Brevig (1981) and Lin et al (1984).  
More recent applications of the BEM to three dimensional (3D) flow include those published by Ferrant 
(1994) and Celebi et al (1998).  The FEM, on the other hand, divides the entire fluid domain into small 
elements. Typical applications for 2D flow include those by Wu & Eatock Taylor (1994, 1995), Clauss & 
Steinhagen (1999), Robertson & Sherwin (1999); and for 3D flow include Wu et al (1998) and Ma et al 
(2001a, 2001b).  
 
As argued by Wu & Eatock Taylor (1995, 1996) and Ma et al (2001a, 2001b), although the BEM has far 
fewer unknowns when applied to the wave/body interaction problem, it usually requires considerably more 
memory for "large" meshes because it leads to fully populated matrices. (An exception is when a multi-
subdomain BEM approach is used, as for example by Wang et al 1995; and there may be other ways of 
improving the efficiency of the BEM). By contrast, direct application of the FEM needs significantly less 
memory and it is computationally more efficient. A drawback of the FEM, however, is the mesh generation. 
For a body having a complicated geometry, a sophisticated mesh generator is usually required to follow the 
motion of the body and the wave. Greaves et al (1997), for example, adopted a quadtree-based mesh 
generation scheme for the 2D problem. The scheme was found to be efficient when the horizontal and 
vertical dimensions of the fluid domain are comparable. For an extremely long or thin domain, the CPU 
requirement for the mesh generator increases rapidly. As remeshing is needed at every time step or after 
every few time steps, excessive CPU consumed by the mesh generator at each time step will make the 
overall computation very inefficient. 
 
The present work therefore explores the use of a coupled BEM and FEM approach. Near the body, the BEM 
is used, as a boundary element mesh is easier to create in that region. Also, when the BEM is confined to a 
small domain, its memory requirement is limited. Away from the body, the fluid domain will be regular if 
the wave does not overturn or break. This allows some simple mesh generator to be used, which can deal 
efficiently with a large (including extremely long or thin) fluid domain. The adopted BEM and FEM are 
based on the approach described in Wu & Eatock Taylor (1995). The additional work required is to ensure 
that the potential and velocity are continuous at the interface of the BEM and FEM domain. This is achieved 
through iteration, in a similar manner to the approach used in that paper where we implemented the domain 
decomposition method for the FEM. 
   
 
2. COUPLED FINITE AND BOUNDARY ELEMENT METHOD 
 
We consider the interaction of a wave generated by a piston-like wavemaker with a two dimensional body. 
A Cartesian coordinate system Oxy is defined in which y coincides with the initial position of the 
wavemaker and points vertically upwards, and the origin of the system is on the mean free surface. All the 
physical parameters are nondimensionalized by the density of the fluid ρ , a typical dimension of the body L 

and the time gL / , where g is the acceleration due to the gravity. The fluid is assumed to be 

incompressible and inviscid, and the flow is assumed to be irrotational. A velocity potential φ  can then be 

introduced, which satisfies the Laplace equation and the usual non-linear boundary conditions on the body 
surface, free surface and wavemaker .   
 
As shown in Figure 1, the fluid domain is divided into three regions. R1 and R3 are away from the body, 
where the finite element method can be adopted as the mesh can be generated easily.  R2 encloses the body, 
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where the boundary element method can be used. The continuity of the potential and velocity is enforced on 
the two interfaces 12Γ  and 23Γ . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The coupled FEM and BEM computational domain 
 
 
 
Based on the finite element method, the potential in R1 can be written as 
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where jφ  are the nodal values of the potential, 1n is the number of the nodes in  R1 and ),( yxN j  are the 

shape functions, which have been chosen to vary linearly over triangular elements in the present analysis.  
Application of the Galerkin method within R1 leads to   
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It should be noted that the direction of the normal of 12Γ changes sign from R1 to R2. 

 

Within R2, the complex potential )2()2( ψφβ i+=  is defined, where )2(ψ  is the stream function.  Along the 

boundary we can write 
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jβ  are the nodal values of the complex potential and the interpolation function is chosen as  
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Application of Cauchy’s theorem gives  
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In R3, we can  write  
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similar to equation (2). Here the potential on the boundary at the far end ES is treated as known, because it 

can be obtained through the solution at the previous time step using the radiation condition (Ma et al 2001a, 
2001b). 
 

Equations (2), (5) and (7) can be solved iteratively. When n∂∂ /)2(φ  in (2) is assumed, the equation becomes 

complete and can be solved. From the solution of )1(φ  we replace )2(φ  on 12Γ  in (5) by 

)( )2()1()2( φφγφ −+ , where γ  is the relaxation coefficient. When )2(φ  on 23Γ  is assumed in (5), the 

equation can be solved to give n∂∂ /)2(φ  on 23Γ  through the derivative of the stream function along the 

boundary. Subsequently, equation (5) can be solved to give the new value of the potential on 23Γ  through 

)( )2()3()2( φφγφ −+ . The solution procedure then returns to R1 and is repeated until the desired accuracy 

has been achieved.  
 
 
3. NUMERICAL RESULTS 
 
The results given in Figure 2 are for a cylinder of radius r0 with submergence 1.5r0 in water of depth 4r0. 
The cylinder is placed at a distance equal to 65r0 from both the wavemaker and the far end.  The length of 
the BEM is equal to 4r0 with the cylinder being in the middle. The wavemaker is stationary and the cylinder 
moves with horizontal velocity taU ωω sin=  (a = 0.1 and ω = 1.0, using the non-dimensional parameters 
previously specified). Based on the linear solution in the frequency domain, the vertical force is zero 
because of anti-symmetry. The result in Figure 2b, which has been divided by a, is therefore due to the 
nonlinear effect. In particular, it has been shown by Wu (1993, 2000) that when the motion becomes 
periodic, the nonlinear vertical force has only components of ωn2  while the horizontal force has only 
components of ω)12( +n , ...,2,1,0=n , which can be seen to be consistent with the results in Figure 2. 

More results and discussion will be given at the workshop.  
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                                (a) horizontal force                                                      (b) vertical force 
 

Figure 2 Time history of forces on a submerged circular cylinder in forced sinusoidal horizontal motion 
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