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1 Introduction

For linear hydrodynamic analysis of oating structures, boundary element methods (BEM) employing
the free-surface Green function are frequently used as basic design tools. However, when the methods
are applied for the analysis of Very Large Floating Structures (VLFS), the number of unknowns
(= N) reaches the order of 104{105 and thus large storage requirement (O(N2)) and the excessive
computation time (O(N3) for factorization solvers or O(N2) for iterative solvers) make the application
of conventional BEM impractical. The precorrected-FFT method [1, 2] has been successfully applied to
such a large scale analysis, but not yet for a VLFS in shallow water. We hereby present an alternative
approach using fast multipole methods [3, 4, 5], which have been more commonly used in many �elds
that would require excessive computation resources.

It is known that a fast multipole method for Helmholtz' equation in 2D is possible with the help of
Graf's addition theorem for the Hankel function (see Fukui & Katsumoto [6], for example). Because the
free surface Green function in shallow water is represented by series of Bessel and Hankel functions, the
fast multipole method for linear wave di�raction/radiation problems can be formulated as a straight
forward extention of the method applied to 2D Helmholtz' equation. Because the Green function in the
series form converges rapidly when horizontal distance between source and �eld points relative to the
water depth is large, the method will be most eÆcient when the horizontal dimensions of the analyzed
area are large compared with the water depth. This is just the case for a VLFS in shallow water. We
have implemented the multipole acceleration algorithm to our higher-order boundary element program
[7] (which is based on the integral equation proposed in [8]), and examined its eÆciency by benchmark
calculations including VLFS response analysis in variable water depth environment of a real sea.

2 Formulations

The Green function in �nite depth water of h can be represented by

G =
1X
m=0

2K0(kmR)

Nm

cos km(z + h) coskm(� + h) (1)

where Nm = h
2 (1+ sin 2kmh=2kmh), km tankmh = �!2=g, km (m � 1) is positive real and k0 = ik, k:

the wave number, g: gravitational acceleration, and time variance of ei!t is assumed for all �rst order
quantities, R denotes the horizontal distance between the reference and the source points, and z and
� are their vertical coordinates, respectively.

Graf's addition theorem for Bessel functions yields:

K0(kmR) =
1X

n=�1

Kn(kmr)e
in�In(km�)e

�in� (2)
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where (r, �) and (�, �) represent the horizontal coordinates of the reference and the source points,
respectively, measured from the origin O which can be arbitrarily (but r > �) chosen. Substitution of
Eq.(2) into Eq.(1) yields:

G =
1X
m=0

2

Nm

1X
n=�1

MmnKn(kmr)e
in� cos km(z + h) (3)

Mmn = In(km�)e
�in� cos km(� + h) (4)

Note that the Green function is now represented in the form of multipole expansion around O. There-
fore, we are now ready to apply the fast multipole algorithm. The normal derivative at the source
point, @G=@n, can also be represented by the same form, with just replacing Mmn by @Mmn=@n. The
origin of the multipole expansion can be moved arbitrarily (under r > �), and the coeÆcient ~Mm� for
the new origin O0 can be calculated from Mmn at O by

~Mm� =
1X

n=�1

MmnI��n(km�)e
�i(��n) (5)

where (�,  ) is the polar coordinate of O measured from O0. This can also be obtained from Graf's
addition theorem.

In the evaluation of the integral
R
GV dS (same procedure can be applied to

R
Gn�dS in the

followings), the inuences from near panels are evaluated directly in a conventional manner; however,
the inuences from far panels can be evaluated using Eq.(3) where the Mmn is replaced by

MB
mn =

Z
Sfar

MmnV dS (6)

where Sfar represents the surface at the far distance from the collocation point. Firstly, we calculate
MB
mn for each panel locating the multipole expansion point at the horizontal coordinates of the panel

center, then gather them at the center of 'leaf-cell' as a group of several panels, where Eq.(5) can be
utilized. Further, a group of four cells form an upper level cell, and MB

mn is also calculated at the
center of the upper cell. Note that at this stage, we need not specify the reference (or collocation)
points. We may de�ne the level 0 cell as a square cell including all panels, and then level 1 cell as a
quater portion of the level 0 cell, level n cell as a quarter of level n � 1 cell, etc. [5]. After setting
up the multipole coeÆcients MB

mn for all cells at each level, we calculate
R
GV dS utilizing Eqs.(3)

and (6) for each collocation point, where larger cells are selected as far as possible. This hierarchical
algorithm is known to be O(N logN) for the computation time [4]. Although the O(N) algorithm [3, 5]
is also possible as has been made by Fukui & Katsumoto [6] we hereby implemented the O(N logN)
algorithm because of its simplicity and easiness for developing parallelized program. Because the
integrals can be evaluated very fast using these algorithms, we can solve the integral equation with
an iterative solver without holding large part of coeÆeient matrices. The requirement of only O(N)
storage may be the most attractive feature of the method.

When a factorization solver is used, we usually use modal expansion approach to VLFS hydroe-
lastic analysis, where a number of radiation problems are solved separately for each mode, and then
generalized added-mass and radiation damping are calculated for modal coordinates [7]. However, it
is not the case when an iterative solver is used; we would like to have the �nal solution from only
one iterative procedure without solving a number of separate radiation problems. This can be done
by solving the structural problem in each step of the iterative procedure and �nding the relationships
between �n and � on the wetted-surface of the structure. If the modal method is applied, this may
be represented schematically for a at-bottom VLFS by

f�ng = �!2[f ][K � !2M ]�1[L]f�g (7)

where [f ], [K � !2M ], and [L] are 8NE �P , P � P , and P �N matrices, respectively, where NE and
N are the numbers of panels and nodes on the bottom surface of the VLFS, and P is the number
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of deection modes as an elastic plate. It should be noted that a large part of memory allocation is
consumed for storing these matrices for the Fast Multipole Method in Table 1; the memory allocations
only for hydrodynamic part are less than half of the indicated values.

A box-like VLFS, either in constant depth sea h = 8m or in variable depth sea (Fig.1), has been
analyzed for the oblique wave of � = �=4 (� = 0 corresponds to the head wave from positive x
direction and � = �=2 to the beam wave from positive y direction). The speci�cations of the VLFS
are: the length L = 1; 500m, the beam B = 150m, the draft d = 1m, the rigidity as an elastic plate
D = 3:88� 107 kNm, and the Poisson's ratio � = 0:3. Number of modal functions employed are 160
(20 in longitudinal & 8 in beam). Results are shown in Tables 1 and 2, and Figs.2{5.

Table 1: Performance of the fast multipole method and the direct method using LU factorization on
an EWS node (IBM RS/6000SP; POWER3 375MHz). The residual tolerance in GMRES � = 10�4,
L=� = 9:57 (T = 18sec), h = 8m (constant). Values in parentheses are estimates.

Typical Number Fast Multipole Method Direct Method
Model panel of Number CPU time CPU Memory CPU Memory

size, � nodes of iter. per iter. time allocation time allocation

A 25m 1,609 31 3 sec 1.80 min 27 MB 1.55 min 54 MB
B 12.5m 5,377 32 15 sec 10.4 min 89 MB 28.5 min 489 MB
C 6.25m 19,393 32 86 sec 77.4 min 315 MB (907 min) (6 GB)
D 3.125m 73,345 32 570 sec 775 min 1.15 GB (708 hr) (85 GB)

Table 2: Numbers of iterations of GMRES and computation times for various L=�. h = 8m (constant).

Model L=� Wave Number of iterations CPU time
period � = 10�3 � = 10�4 � = 10�3 � = 10�4

C 9.57 18 sec 25 32 1.15 hr 1.29 hr
C 17.9 10 sec 112 148 3.46 hr 4.40 hr
C 33.2 6 sec 252 497 8.23 hr 15.7 hr
D 62.0 4 sec 287 | 63.8 hr |
D 62.0 4 sec 287 | 14.5 hr* |

*Parallel computation using 5 CPUs.
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Figure 1: Contour plot of the variable depth con-
�guration.
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Figure 2: Deection amplitudes of VLFS in
costant depth sea (model B) at T = 18sec. |
: direct method, { - {: fast multipole method
(� = 10�3).

x

w
a/

A

-500 0 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

T=10sec

T=6sec

T=4sec

Figure 3: Deection amplitudes of VLFS in
costant depth sea for various T along y = 0.
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(a) in constant depth sea (h = 8m).
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(b) in variable depth sea.

Figure 4: Deection amplitudes at T = 18sec.

x

y

-1000 -500 0 500 1000
-800

-600

-400

-200

0

200

400

600

800

1000

3.36
2.87
2.38
1.88
1.39
0.90
0.40

-0.09
-0.58
-1.08
-1.57
-2.06
-2.56
-3.05
-3.54

Figure 5: Snapshot of the surface elevation around
the oating body in the variable depth sea. T =
18sec, total nodes: 67,098 (61,721 for the sea-
bottom surface, 5377 for the VLFS).

4


