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1.INTRODUCTION

Recently the estimation of elastic motion of a very large floating structure (VLFS) has been carried out for the
Mega-Float project in Japan. The latest version of the computer code is based on the Finite Element Method.
This code can deal with arbitrary shape of the structure and the topology of the sea bottom, however the code
is time consuming and is not useful for the conceptual design. Actuary, the committee of the project regards
this code as a program for the detail design.

It is obvious that we need a method to estimate the effects from all environments, for example the bottom
topology, break water, geometry of the structure and so on, in the conceptual design. The method should
be easy to handle and should not be time consuming. In this aspect, Takagi and Kohara[2000] proposed an
application of the ray-theory to hydro-elastic behavior of VLFS. The theory itself is based on the classical ray
theory. The hydro-elastic behavior of VLFS is treated as wave propagation in the platform. The wave field
around the platform and in the platform is represented as a summation of wave rays.

The shortcoming of the ray theory is that corners of the platform are singular point. Takagi [1999] solved
the corner problem that is the wave propagation from the water region to the semi-infinite quarter plane covered
with the elastic platform and it is found that the corner effects i1s inversely proportional to the square root of
the distance from the corner. Therefore, the corner effect is limited around the corners. Another shortcoming
is that the wave amplitude is suddenly changed along a ray that passes through a corner. This shortcoming is
overcome by applying the parabolic approximation in this paper.

2. FORMULATION OF THE RAY THEORY

It is well known that the water wave problem is greatly simplified by the shallow water approximation, since all
evanescent terms are vanished. Although extension of the ray theory to the finite depth problem or the varying
depth problem has no essential problem, the shallow water approximation is employed in this paper for the
simplification of the problem. The velocity potential satisfies the modified continuity equation
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where K = “;—2, M = D/pg and h is the water depth. D is the flexural rigidity of the platform, g is the
gravitational acceleration and p is the density of the water. (1) gives the dispersion relation in the platform.

K = (14 Ma*)a*h (2)

Tt is well known that (2) has six roots, and three of them are suitable for present problem. We call these roots
as ap, (n=0,1,2) herein after.
The ray tracing is performed, according to the characteristic form of the conservation of the wave number
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If the water depth and the flexural rigidity were constant, the problem would be very simple. We just take
the refraction of the ray into account at the edge of the platform. The difficulty is that the displacement of
the platform is suddenly changed along a ray that passes through a corner as stated previously. In order to
overcome this difficulty, we discuss the asymptotic form of the exact representation of the wave propagation in
the platform.

3. ASYMPTOTIC FORM IN THE PLATFORM

According to the boundary integral formulation derived by Takagi [1999], the hydro-elastic behavior of the
platform is represented by the sinusoidal distribution of the Green function.
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where € and ¢ ensure the radiation condition.
Applying a contour integral to (4), a component of plane waves can be derived. The detail of the derivation

is found in Takagi[1999].
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and A(a) = (14+ Ma*)a?h. 1t is noted that Cry denotes plane progressive waves and it does not affect the other
edge i.e. on the line y = 0. Cf; and Cr3 are also plane progressive waves, however their wave number is a complex
number and these waves decay quickly as the coordinate # becomes large. The first three terms in (5) represent
the end effect and the first term is asymptotically proportional to 1/v/agR. When the observation point is far
from the corner, the end effect vanishes and the solution coincides with the solution of the semi-infinite half
platform problem.

A difficulty is expected when 6 equals to 3, because the stationary phase method can not be applied to the
first term of (5). Therefore, the asymptotic form along this line is discussed. The following coordinate is defined
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and the order of 3 is assumed to be O(aal/z). It is also noted that the we are considering the region R = O(1).
After some manipulations we obtain
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where o = aoy’/(raox’)H?. Tt is obvious that the right hand side of (11) is the anti-symmetric solution of the
parabolic approximation that is found in May[1989].

4. PARABOLIC APPROXIMATION
According to the previous analysis, it is reasonable to assume the velocity potential of the form
d)(x,y) — ,l/)(x’y)e—iO(D(I/‘COSMD+ySiHND). (12)

If the angle of wave propagation pg is large enough, 1 would be the anti-symmetric type solution of the parabolic
approximation as stated previously. On the contrary, when pg = 0 (head sea case), Ohkus[1999] showed that ¢
is the symmetric solution of the parabolic approximation. A difficulty may be expected, when py = O(aal/z).

In this case, the parabolic approximation leads
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. In such a order-
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in which the all terms are equal in order of magnitude when # = O(1) and y = O(«,
assumption, the relative error of (13) is O(ag!).
To solve this equation, we require the conditions,

Y(x,y) = 1, when y — 400, (14)
Y(x,y) =0, z < 0. (15)

Tt is noted that these boundary conditions are not enough to solve (13). Another boundary condition is required
along the line y = 0. This boundary condition is given from the matching condition that will be discussed later.
Only the following condition is necessary here that guarantees the radiation condition of the solution in the
water region.
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where 7" is a constant value.
The Fourier transformation technique is convenient to solve (13). The solution is represented in the Fourier
transformation space,
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The inverse Fourier transformation gives the solution
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and erfe(x) is the complementary error function.

It is obvious that the first term of (19) remains when ¢ approaches to infinity. This is the anti-symmetry
solution of the parabolic approximation that obtained in the previous section.

We also have the alternative form of (19),
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This form shows that the solution approaches to the symmetric solution of the parabolic approximation when

f is very small.
In order to achieve the matching with the inner solution that will be discussed in the next section, a function

U(x) is defined as
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It is apparent that ¢ approach to U(z) when y approaches to zero.

U(x) =1-



5INNER SOLUTION

It is noted that (19) does not satisfies the edge conditions, and the parabolic approximation ignores the
exponentially-decay term that is one of fundamental solutions in the platform region. This fact implies the
necessity of the inner solution, and the inner solution is valid in the region of y = O(aal).

It is easily obtained that psi should satisfy the following equation in this region.
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The solution of (23) in the platform region is supposed to have the form
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It is obvious that the matching condition requests
By=1 (25)

On the other hand the inner solution in the water region should satisfy (23) of the case M = 0. Therefore, the
inner solution in the water region has the form
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where k is the solution of dispersion relation in the water region K/h = k? and yr = Cos~lag cos to/k.
The continuity of the flux along the line y = 0 requires
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The so-called free-free boundary condition at the edge of platform requires two conditions
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Now we have three equations and three unknowns, thus the inner solution is completely determined with a
simple linear algebra.

6.CONCLUDING REMARKS

It was found that the hydro-elastic behavior of a very large floating structure is represented with a simple
equation by applying the parabolic approximation. It seems that this result 1s also extended to the case pg < 0
and to the improvement of the sudden change of wave elevation that appears in the water region. These will
be the future works. Finally, it should be noted that the corner effect is still the problem, and further study is
necessary since the magnitude of motion at corners of the platform is usually big.
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