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1. Introduction

Effects of hydrodynamic interactions among multiple cylinders must be expected not only on the first-order forces
and wave-induced motions but also on higher-order hydrodynamic quantities. The present paper is concerned with
the characteristics of second-order steady forces on each cylinder in a rectangular array composed of many identical
cylinders with equal separation distance.

Recently, Kashiwagi (2000) presented an effective calculation method for the wave drift force on the basis of the
momentum conservation principle. However, this method (referred to as the far-field method) gives only the total
forces in the horizontal plane and the yaw moment on the whole structure.

Meanwhile, the wave drift force can also be computed by integrating the pressure over the wetted surface of a
structure, which enables us to evaluate the local forces on each cylinder. Based on this direct pressure-integration
method, an accurate numerical calculation method is presented in this paper. Validity and numerical accuracy of
the method are confirmed by comparison with the results of the far-field method and experimental results measured
using 64 truncated circular cylinders arranged in 4 rows and 16 columns.

2. Formulation and Second-Order Forces

A column-supported large floating structure is considered, which comprises a thin upper deck and a large number
of identical and equally-spaced buoyancy columns. The elementary column considered here is a truncated circular
cylinder with radius a and draft d. The distance between centerlines of adjacent cylinders is 2s in both x- and y-axes
of a Cartesian coordinate system. The positive z-axis is directed downward, with z = 0 the undisturbed free surface
and z = h the constant water depth.

The structure is allowed to move with unsteady motions of six degrees of freedom in response to the wave excitation.
The vectors of the translational and rotational motions are denoted by ξ(t) and α(t), respectively; the magnitudes
of which are assumed to be small. Under the usual potential-flow assumptions, we introduce the velocity potential,
Φ, with which the hydrodynamic pressure can be computed from Bernoulli’s equation. Then the wave force on a
body can be obtained by integrating the pressure multiplied by the unit normal vector over the instantaneous body’s
wetted surface, say S(t).

Assuming weak nonlinearities, the velocity potential and the motion vectors can be written as a perturbation
series in a small parameter which is usually taken as the wave slope. Furthermore, using Taylor’s expansion for the
pressure and unit normal vector on S(t) with respect to the mean body surface, SB , the wave forces on a body can
be expressed also in a perturbation series. Skipping details of the derivation (see Ogilvie (1983) for example), the
calculation formulae for the first-order and second-order forces can be summarized as follows:
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which must be evaluated along the mean waterline CB; ρ is the fluid density; g is the gravitational acceleration;

n is the unit normal vector directing into the fluid from the mean body surface SB; Ξ(1) = ξ(1) + α(1) × r and
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2 x ; k is the unit vector in the z-direction of the space-fixed coordinate axes. The

corresponding expressions for the moment can be obtained in a similar form.
The present paper is concerned with the second-order steady forces, which can be computed by taking time-average

over one period of F (2)
q which contains only quadratic products of first-order quantities.

3. Solution of First-Order Problem

The first-order quantities are assumed to be time-harmonic with circular frequency of the incident wave, ω, and are
expressed as
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where A is the amplitude of the incident wave, K = ω2a/g is the nondimensional wavenumber, and Xj (j = 1 ∼ 6)
is the complex motion amplitude expressed in a nondimensional form.

φI and φS are the incident-wave and scattering potentials, respectively, and the sum, φI +φS ≡ φD, is referred to
as the diffraction potential. For plane waves propagating in the direction with angle β relative to the positive x-axis,
φI is given by

φI =
cosh k0(z − h)

cosh k0h
e−ik0(x cos β+y sin β), (7)

where k0 is the solution of the wave dispersion relation, k0 tanh k0h = K.
In the radiation problem, φk in (5) denotes the velocity potential of a single body oscillating in the k-th mode

(with no interactions), and ϕk represents the remaining part due to hydrodynamic interactions with radiated and
scattered waves by the other bodies, which are essentially the same as the scattering problem.

Therefore the boundary conditions to be satisfied on the body surface, SB, are given as
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where n = (n1, n2, n3) and r × n = (n4, n5, n6).
Solutions satisfying (8) and other free-surface and radiation conditions may be obtained by Kagemoto & Yue’s in-

teraction theory (1986). The expressions of the velocity potentials appropriate near the j-th body can be summarized
as follows:
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Here kn (n = 1, 2, · · · ) denotes the evanescent-mode wavenumbers satisfying kn tan knh = −K. The local cylindrical
coordinate system (rj , θj , z) has been used, with the origin placed at the center of the j-th body. The number of
Fourier series in the θ-direction, m, is taken as 0, ±1, ±2, · · ·.

Once the velocity potentials are determined, it is straightforward to compute the first-order forces, F (1) defined
by (1), on each of the cylinders in the array. The complex amplitude Xk defined in (6) will be determined by solving
the motion equations of the structure consisting of many buoyancy cylinders.

4. Outline of Numerical Computations

As the first step of numerical computations, the first-order boundary-value problems for a single cylinder were solved
by the boundary element method using 9-point quadratic representations for the surface geometry and velocity
potential.

In computing the wave interactions by Kagemoto & Yue’s theory, the number of Fourier series in the θ-direction
(M) and of evanescent wave modes (N) were determined to be M = 5 and N = 3 after a convergence check. In
this case, the total unknowns for NB = 64 cylinders are (2M + 1) × (N + 1) × NB = 2816. To enhance numerical
efficiency, the double symmetry relations with respect to the x- and y-axes were exploited, reducing the number of
unknowns to 1/4 (i.e. 2816/4 = 704).



In computing the second-order steady forces, the spatial derivatives of the velocity potential over the submerged
surface, SB , and the line integral along the waterline, CB, were evaluated using the boundary condition (8) and
quadratic isoparametric representations for the velocity potential and coordinates (x, y, z).

5. Outline of Experiments

A truncated circular cylinder with diameter D (= 2a) = 114 mm was used as an elementary float, and 64 cylinders
were arranged in a rectangular array with 4 rows (in the y-axis) and 16 columns (in the x-axis) with equal separation
distance of 2s = 2D between the centerlines of adjacent cylinders in both x- and y-axes. The draft of cylinders was
set to d = D and 2D, but the results of d = 2D will be mainly shown because there were no essential differences.

Although the effects of wave-induced motions can be taken into account in the calculation method, the motions
of the structure were completely fixed, and the experiments were carried out in head waves (β = 0◦). The wave
forces were measured by dynamometers at 6 different positions; No. 1, No. 9, and No. 15 Columns. (16 columns are
numbered from the upwave side.) By symmetry in head waves, the lines at y = ±D are called the inside and the
lines at y = ±3D are called the outside. Then the positions of measured cylinders are distinguished with the column
number and the inside or outside line. The frequency range in the measurements was Ks (= ω2s/g) = 0.2 ∼ 1.6 and
the wave steepness H/λ (the ratio of wave height to wave length) was set to approximately 1/50.

6. Results and Discussion

Numerical accuracy of the present method was checked by comparing the sum of the local steady forces on 64 cylinders
with independent results by the far-field method developed by Kashiwagi (2000). Some results are shown in Table 1
for the case of β = 30◦, s = D, d = 2D, and h = 7.5 d. In computing the wave-induced motions, the center of gravity
was assumed to be on the water plane, and the radii of gyration in roll, pitch, and yaw modes were set to 0.25B,
0.25L, and 0.25L, respectively, with B and L being the breadth and length of the structure.

Table 1 Steady forces in surge, sway, and yaw on a structure with 64 circular cylinders arranged
periodically in the array of 4 rows and 16 columns, computed by the far-field method and the
pressure integration method. (d = 2D, s = D, h = 7.5 d, β = 30◦)

By Far-Field Method (Momentum-Conservation Principle)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05413 0.00876 0.00412 0.14638 0.01407 -0.10189
1.00 0.08821 0.04253 0.02977 0.08946 0.04258 0.03098
1.50 1.6217 0.08032 -0.00668 1.6218 0.08030 -0.00606
1.75 3.9364 0.27782 0.40703 3.9369 0.27766 0.40795
2.00 3.2052 0.70410 -0.26574 3.2048 0.70387 -0.26517
2.50 0.98615 0.50644 -0.37112 0.98633 0.50677 -0.37146

By Near-Field Method (Direct Pressure Integration)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05576 0.00874 0.00343 0.17035 0.01336 -0.10203
1.00 0.08868 0.04209 0.02975 0.08997 0.04213 0.03099
1.50 1.6222 0.08027 -0.00664 1.6223 0.08025 -0.00602
1.75 3.9368 0.27791 0.40708 3.9373 0.27775 0.40799
2.00 3.2056 0.70419 -0.26571 3.2052 0.70396 -0.26513
2.50 0.98646 0.50627 -0.37130 0.98664 0.50661 -0.37164

We can see from Table 1 that very good agreement exists between the far-field method and the present pressure-
integration method. For higher frequencies, the steady surge (FX) and sway (FY ) forces and steady yaw moment
(MZ) were dominated by the diffraction component, because the structure considered here is large in size compared
to the wavelength of the incident wave and thus the wave-induced motions are relatively small.

Computed local steady forces acting on elementary cylinders are shown from Fig. 1 through Fig. 6 together with
measured results. From these figures we can observe the followings:

1) At the upwave side (Column No. 1), variation of the steady force is rapid in the frequency range lower than the
near trapped-mode frequency (Ks � 1.24 in the present case), but this variation becomes mild as the position
of the cylinder concerned goes downstream.

2) For frequencies higher than Ks = 1.24, the local steady forces on upwave cylinders become positive and large,
dominating the total drift force on the structure.

3) The steady force on a cylinder along the inside line in the array is larger than that on a cylinder along the
outside line in the variation amplitude with respect to the frequency.

4) Computed results by the present method are in good agreement with measured results, except for the very
narrow frequency range just below the near trapped-mode frequency.
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Fig. 1 Steady surge force on the cylinder at Column
No. 1 along the inside line

Fig. 2 Steady surge force on the cylinder at Column
No. 1 along the outside line
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Fig. 3 Steady surge force on the cylinder at Column
No. 9 along the inside line

Fig. 4 Steady surge force on the cylinder at Column
No. 9 along the outside line
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Fig. 5 Steady surge force on the cylinder at Column
No. 15 along the inside line

Fig. 6 Steady surge force on the cylinder at Column
No. 15 along the outside line


