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The dynamics of waves along the ocean surface plays an important role for safety of ma-
rine activity and operations. The waves determine the input parameters for dimensioning of
oil-platforms and ships. Further, the waves determine the loads in tension-legs and risers con-
nected to oil-platforms and floating production ships. The most common industrial analysis
tools for waves at the sea surface (irregular waves) employ perturbation models, capturing
nonlinear effects up to the second or the third order in wave steepness. Observations both
in large scale and in laboratories reveal that weakly nonlinear methods have shortcomings in
modelling moderately steep waves and the corresponding induced velocities and accelerations.
Prominent examples are waves leading to ringing of offshore structures and highly nonlinear
freak waves. Fully nonlinear methods which capture the weaknesses of weakly nonlinear meth-
ods have primarily been employed to study breaking waves. Here we focus an intermediate
amplitude range, where perturbation models have poor performance, but the amplitudes are
below those leading to breaking.

A common drawback of the existing fully nonlinear methods is that the computational
schemes are slow. This means that long time simulations of wave-fields with appreciable
size are unrealistic. While the integration of the prognostic equations can be made fast, the
bottleneck is the solution of the Laplace equation which is required at each time step. Thus,
a fully nonlinear model for water waves can only be fast provided that the Laplace equation
solver is fast. Here the aim is to derive a rapid method for fully nonlinear non-overturning
water waves. The formulation is two-dimensional, but the method may be extended also to
the three-dimensional case. Making use of potential theory we introduce velocity potential
and stream function (¢,%), and (z, y, t) as horizontal, upward vertical and time variables,
and let n(z,t) be the surface elevation relative to the mean level y=0. In two dimensions we
obtain ¢ and ¥ by the Cauchy integral formula, split into real and imaginary parts, giving
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where the ‘tildes’ denote the functions at y =7 and ¢ = ¢(z,t), ¢’ = ¢(z',t), etc. In (1)-(2)
the function D= (' — n)/(z' — z) is introduced, where D decays according to |z’ — z|~! for
|z’ — 2| = 00 and D =, for 2’ — 2. The equation (2) is commonly used to determine 0, given
qg and 7. 12 is then determined implicitly, and the equation is typically solved iteratively with



O(N?) operations. This is the intensive part of the computations. An alternative, however,
is to determine ¢ from equation (1).

When the surface is horizontal, the integral equations are convolution products and can
therefore be computed very quickly via Fast Fourier Transform. For a non-horizontal surface
it is then tempting to reformulate the equation obtaining the form of convolutions. Splitting
(1) into singular and regular integrals we obtain after one integration by parts
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Applying the Hilbert transform (i.e. H{f}=- 1peo L&) g ), equation (3) becomes
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This is another equation for zz In (4), the singular integrals are convolutions and can thus

be computed quickly. The remaining regular integrals have kernels that decrease rapidly,
as |2’ — 2|73 and |2’ — z|7%, respectively. Therefore, integrations over (—oo, +00) can be
approximated by integrations over a limited interval (z — A,z + X). The parameter X is
choosen in accordance with the precision needed and depends on the wave characteristics and
not on the length of the computational domain. Moreover, the contribution on the right hand
side of (4) involving ¥, is cubic in nonlinearity, while in equation (2) the corresponding term
is quadratic. For nonbreaking waves, iterations with (4) thus converge faster than iterations
with (2). The convergence is so fast that one iteration is enough for most of the practical
computations (see below).
An iterative scheme is initialized by the explicit quadratic approximation
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Applying one analytical iteration, neglecting integrals being of quartic nonlinearity, we get
another approximation
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The latter is explicit and does not involve transcendental functions. It is very accurate and
quickly computable. Integration over one wavelength of steady periodic waves, with almost
maximal slopes, cannot be distinguished from reference computations (fig. 1).

The formulation is also tested in unsteady simulations with the following method. The
linear parts of the temporal evolution equations are solved analytically, while the remainding
nonlinear parts are solved numerically with a variable step-size eight-order explicit Runge—
Kutta scheme. A spectral method is used to compute the spacial derivatives, without smooth-
ing or regridding. Evolution of a long wave packet, with initially small slope of the carrier
wave (ako = 0.12), is simulated. Very large waves — freak waves — are formed after some



while (fig. 2). The omitted term in (4) is quartic in nonlinearity with a small coefficient, and
thus very small. This term may easily be included if needed. For most of the simulations it
may be neglected. Therefore, the method is fully nonlinear in practice.

The method is O(N log N) for practical computations, and thus very fast. Extensions
include the three dimensional case and a finite (varying) fluid depth (Clamond & Grue 2001).

This work was conducted under the Strategic University Programme ‘General Analysis of
Realistic Ocean Waves’ funded by the Research Council of Norway.
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Figure 1: Comparison of approximations for 2ra/A = 0.41 (A wavelength).

— exact, — — {/71 (eq. 5), 0 1’527; (eq. 6 with A=A/2).
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Figure 2: Temporal evolution of a wave packet.



