A shortcut for computing time-domain free-surface potentials
avoiding Green function evaluations.
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The numerical solution of transient hydrodynamic problems in the frame of the linearized
potential theory requires the computation of convolution integrals. These integrals may
be regarded as the memory of the free-surface fluid. Since they extend from the initial
state of rest up to the current time ¢, the mass storage and cpu time required for their
computation grow quickly with time, roughly quadratically. Consequently, in time-domain
seekeeping computations, the major part of cpu is spent in evaluating these convolutions
(Magee 1991).

Let us consider, for instance, the generation of surface waves by the prescribed motion
(V) of a body around its equilibrium position (S) in a perfect fluid.

The resulting velocity potential @(M,s) must satisfy the following boundary integral
equation :
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where G, and F are respectively the impulsive and the memory part of the Green

function. In the present study we focus our attention on the convolution integrals in the
RHS of (1). They may be written in the general form :

T
S=jQ(r)F(r,Z+Z’,t—1)dr 2
0

where, when the water depth is infinite (Finkelstein 1957, Wehausen & Laitone 1960) :
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Fig.1: Definition sketch.
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a precomputed table (Ferrant-1988, Magee & Beck-1989).

An alternative method to evaluate the convolution products (2) without computing
explicitly the Green function was proposed by Clément (1991). It is based on the
identification of the Green function considered as a SISO (Single-Input-Single-Output)
linear time-invariant process. The identification parametric model of the process is a
linear ODE linking the input Q(M’,¢), the output S(M,#), and their derivatives. Once such a
model has been found, S can be recovered from the knowledge of @ by simply integrating
the ODE from a time step to the next one, instead of computing convolution integrals like
(2). Doing so could save a huge amount of computer time and memory (Clément 1992).

1. A parametric time-varying model

In our first papers related to this topic (1991-1992), we attempted to identify the Green
function with discrete time invariant models. These kind of models, often called ARX in
process science literature, are characterized by discretized ODEs with constant
coefficient.

They were shown later (Clément 1995) to be inadequate for the time domain Green function
(3) which behaves asymptotically like a “chirp” process. This feature results in increasing
considerably the model order to maintain a reasonable accuracy as both source point and
field points approach the free surface (i.e : u —0).

Thus, we were led to adopt a more refined model (4) where the ODE coefficients are
themselves function of time.

i=n i=n-1
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where we use the notation : S®(¢) = %@

In such a differential model, the causality of the process ensures the right-hand side order
to be less than the left-hand side order. This property which is well known when the
coefficients are constant, still holds for time-varying models (Zadeh et al. 1963).

2. The auto-regressive terms A, ()
The left-hand side of (4) is generally referred to as the auto-regressive part of the model. It
can be obtained from the response of the process to an impulsive input Q()=45().
Here, the impulse response function of the process is, by definition, the Green function
itself F(M,M",t).
Taking advantage of the fact that the kernel of the integral (3) can be expressed by an
hypergeometric function, an exact fourth order differential equation for F may be derived
making use of the general confluent equation :
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with: u=-(Z+2)/Jr*+(Z+2"*. Thus, from (5), the auto-regressive coefficients 4,(t) are
found to be polynomials at most of degree two in the time variable. Their coefficients are
very simple functions of the geometric parameters x and R,. A detailed derivation of (5)
will appear in a more lengthy paper (Clément 1997).
As a first step toward computations speed up, one may use this ODE instead of the
ciassical series developments (Newman 1985) for the in-line evaluation of the Green
function in the numerical computation of the integral (3). To do so, one need also the initial
conditions which can be easily deduced from (3) and its time derivatives by using the
integral form of Legendre polynomials. After some algebra, we obtain :

J*F Tt oF 9
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F(2k+1)(r,§,0)= (_l)k(k'!' 1)! k'—'O, 1, (6)
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which give the complete set of the time derivatives at the origin ; all the even order
derivatives are null. It should be noticed to conclude this section that (5) and (6) are exact
analytical results.

3. The forcing terms

The right-hand side of eq.(4) is generally referred to as the forcing term. Its form is a priori
unknown, and a direct combination of (2) and (5) would lead to reintroduce convolution
integrals in the RHS of the model. Thus, referring to time invariant models for which the
property is formally established, we made the hypothesis that the forcing term of the
present model can be expressed by a differential form similar to LHS (i.e with polynomial

coefficients), and we sought it in the form :
3

=B

RHS(4)=Y QV®) Y p,t’ @)
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The determination of the unknown coefficients p, was made easy by the knowledge of all

the Markov parameters of the process through eq.(6). The method consists in expressing

the model (4) and its successive time derivatives at the origin of time. At each level of

‘differentiation, one can show that the lowest order unknown parameters p, may be

expressed as a linear combination of the coefficients of (5), and of the Markov parameters
F9(,.,0).

4. continuous models of the Green function and its gradient.

The above method was applied first to the Green function itself , and gave :
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The maximum order of the polynomials P, was assumed to be at most equal to the order

of the A, to ensure a stable asymptotic behaviour; whatever the input of the process ;

nevertheless, it should be pointed out that the iterative method in §3 could provide higher

order polynomials.
1.5

----- Model output . .
A\ System outpu Results of a simulation of the

process output for an har-
monic input Q(t)=sin(6t) are
03 plotted on Fig.2 . Both methods
\ /\\ were applied : a standard
o0 \ N~ trapezoidal integration
\ method using (2) and (3), and
03 \J/ the present time-varying
model (8). Discrepancies
o 2 4 ¢ s 1 12 14 16 18 22 2 between these two curves
Time appear to remain negligible in

this precise case.

1.0

System output

-1.0

Fig.2 : Output S(¢) for input @(t)=sin(6%),
computed by both methods. p =.3714
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Because the solution of the integral equations of time-domain hydrodynamics may require
also convolution integrals involving the gradient of the Green function, the present
approach was applied to the horizontal and vertical gradient as well.

We simply give below the results after calculations.

Horizontal ien 17
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Vertical gradient R? aﬁ +uRE ST S [i +6 R)f;tf -1;1-‘-%% 24—53- (10)
(e o e 2

Numerical simulations were also performed for these two models with the same input,
and a comparable accuracy was observed. Thus, the proposed models seem to be useful
for our purpose in that frequency range. Nevertheless, the results are not so good as the
input frequency decreases, and refining the models of the forcing terms seems to be
necessary in that range.

Conclusion The time-domain Green function and its gradient were found to be solutions
of fourth order ordinary differential equations with time-varying coefficients. These
coefficients functions are low order polynomials of the time variable, and their own
coefficients are simple functions of the geometrical parameters of the problem

These time varying models may be used to compute the convolution integrals in time-
domain seakeeping codes without computing the Green function itself (nor its gradient).
The accuracy is excellent for high frequency, but remain to be improved in the low
frequency range.
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DISCUSSION

Newman J.N.: Equation 5 is remarkable. One consequence is that the
corresponding frequency-domain Green function integral satisfies a 2nd order
ODE with respect to the wavenumber!

Magee A.: I wish to congratulate the author on a truly original contribution on
the use of time-domain Green functions. If a more accurate method for the forcing
terms can be found, this shortcut should soon supplant all available methods for
computing the time-domain Green function, because it will permit a gain of about
80 % in memory requirements for typical calculations. It is clear that equation (5) is
exact. Is it possible to find exact solutions for the forcing terms (second part of
eqn. 8)? What are the steps necessary to find these terms?

Secondly, you have treated the case applicable to linearised motions at zero
forward speed, that is, the positions of the source and field points are not functions
of time. However, we already have well-developed frequency-domain calculation
methods for this case, at least in infinite depth. The real benefit of the time-domain
method is its applicability to more complex cases such as steady forward speed and
arbitrary large-amplitude motions because the Green function retains its relatively
simple form in these cases as well.

According to my calculations, equation (5) is also valid in a steadily moving
coordinate system (linearised problem with steady forward speed U) provided we

replace the partial time derivative —aa—t with the total derivative %—U ai in the
X

steadily moving frame. In this case we would have:

2(3 _p Y a_ 1)3 2 (g_ _a_)zF _71(_?__ g),, 9 poisn
Rl(at Uax) F+“R]t(at Uax F+ 4+4uR1 ot Uax +4 ot Uax +4 (Sbis)

(1) (2) ®3) (4) (5)

where R; and p are functions of time. In order to calculate the Green function in
this case, we would need to "simulate" the Green function and its first four x-
derivatives, which I have not done here. However, I have tested (5bis) by other
means.

The attached figure presents the five terms of equation (5bis) and the sum of the
terms, which should equal zero, if the relation holds. The Green function values
were calculated using a Romberg method to assure a good precision, and the
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derivatives were calculated using finite-difference schemes. The results seem to
indicate that the relation holds and this is true for all values of the parameters
tested. This calculation is confirmed by an analytical calculation (Maple) using the
series expansion of the Green function (up to the order of the truncated series).

Furthermore, I believe the same equation should generalise to the case of arbitrary

motion of the source and field points (large-amplitude motions case) by using
%—V.V, where V is the relative velocity between M and M’ in place of the

partial time derivative % of equation (5). If this is true, then the large-amplitude

calculations would be only slightly more time-consuming than linearised ones—a
great advance indeed! Could you please comment?
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Fig. 1. The &5 terms of eqn (5bis) and their sum, in the case of steady forward speed U = 0.25,
r=1,y=0,z2=-2

Clément A.: Itis indeed possible to find exact solutions for the forcing term. The
simplest method consists in differentiating (2) four times using the Leibnitz rule,
and then integrating (5) after having multiplied it by Q(¢). After a few lines of
calculations, the exact forcing term of (4) is obtained. Unfortunately, it contains
new convolution integrals, which is exactly what we want to avoid in our model!

Thus, we chose the present approximation by a differential form, with no guarantee
of convergence.
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The Green function F does not depend on the trajectory of the source, due to the
impulsive nature of its strength, and then (5) is also valid in that case, expressed in
a fixed reference frame, provided R; and p are understood as R;(0) and p(0).

It can be indeed expressed in a moving reference frame by changing the derivative
operator as you did, and taking into account the induced dependence of the space
parameters on time. Thus, your numerical check of the ODE in these conditions is
not surprising. As you mention, it involves higher horizontal derivatives of F.
Differential equation similar to (5) could be easily derived for them, from the
general lemma established in Clément (1997), to appear shortly.
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