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1 Introduction

In arecent paper, to be denoted subsequently by I, Evans & Linton [3] using classical linear water
wave theory, proved the existence of edge waves travelling along a periodic coastline consisting
of a straight and vertical cliff face from which protruded an infinite number of identical thin
barriers, each extending throughout the water depth, provided the barriers were sufficiently long.
Because the depth dependence could be separated out, the problem reduced to the solution of
the two-dimensional Helmholtz equation, and was identical to an appropriate problem in linear
acoustics, optics or electromagnetism involving a ‘comb-like’ diffraction grating.

Such edge waves are common in classical linear water wave theory but only when the bottom
topography is non-uniform. The simplest such solution is that found by Stokes [5] for a uniformly
sloping beach. The solution, in the form of a single exponential term, was generalised by Ursell
[6] who showed that more and more edge wave modes were possible as the beach slope tends to
zero. It is known that edge waves exist whenever a shallow region is joined to a deeper region
offshore and Jones [4] proved that at least one such mode exists in this situation.

If the depth of the fluid is constant everywhere it is not obvious that edge waves can exist.
For example the only solution in a region of constant depth bounded by a vertical impervious
cliff, for waves propagating in the direction of the cliff, is a simple plane wave which does not
decay in the direction normal to the cliff, and is not an edge wave. However, as shown in I, if
there exists an infinite set of equally-spaced identical thin vertical impervious barriers extending
outwards in a direction normal to the cliff and throughout the water depth, edge waves do exist.

A special case of these progressing edge waves described in I is that of standing edge waves
and, by symmetry, the problem reduces in this case to a thin barrier, protruding from a vertical
wall and mid-way between two parallel vertical walls extending out to infinity. Neumann condi-
tions are to be satisfied on the barrier and the walls and a Dirichlet condition, corresponding to
anti-symmetric standing waves, is to be satified on the extension of the barrier out to infinity.
This latter condition ensures that a cut-off frequency exists and enables standing edge waves or
trapped modes to be constructed as described in Evans [1]. Previously Evans & Linton (2] have
used the method of matched eigenfunction expansions to show numerically that such trapped
modes occurred when the barrier was replaced by a rectangular block, symmetric about the
center-line.

In the present paper we utilise this method to generalise the standing edge waves in the case
of the block to progressing waves along a periodic array of rectangular blocks. Although falling
short of a rigorous proof of existence the method provides convincing numerical evidence for
surface or edge waves travelling along the grating or, in the water-wave context, along the cliff
face.
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Figure 1: Coastline consisting of a periodic rectangular array.

2 Formulation and Description of Solution

Cartesian coordinates are chosen and the dimensions of the blocks is illustrated in Figure 1.
Because they extend throughout the water depth we can write the harmonic velocity potential
® in the from

®(z,y,2,t) =R {d)(a:, y) coshk(z + h) e'i‘”t} ) (1)

where h is the water depth, w the assumed radian frequency of the edge waves and k is the real
positive root of w? = gktanh kh. In the context of acoustics this is replaced by w? = ke,, where
¢y is the velocity of sound. :

On the basis of either linear acoustics or water waves, we seek a non-trivial ¢(z,y) satis!fying
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It can be shown that a solution ¢(z,y) to these equations can be constructed for certain vihlues
of the parameters and that the corresponding surface elevation in > 0 can be written
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where @),, is real and is given by
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For given a/d, b/d, this solution only exists for a particular relation between kd, and hence
the wave frequency, and Ad the fundamental wavenumber of the edge waves solution. This
relationship is obtained from solving
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3 Results

Figure 2 shows the variation of kd for the edge wave solution with a/d for fixed b/d = 0.4 and
various Bd. As a/d increases more modes occur and the difference between successive values
approaches 7 /kd for a given fd.

In Figure 3 the normalised amplitudes of each mode |@./Qo| are plotted against their wave-
lengths A,/d = 2x/B,d for the particular set of values a/d = 1, b/d = 0.5, Bd = 2 for which
we find the computed wavenumber kd = 1.1681. We see on a log scale how the fundamental
mode of wavelength wd dominates, the amplitudes of the higher modes with the exception of
Q-1 being at least an order of magnitude smaller. In Figure 4 we see that the overall surface
elevation at t = 0, z = 0 of this edge wave is aperiodic but is dominated by the fundamental
mode and also appears to affected by a lower ‘beat’ frequency. Further results plus an indication
‘of how the results (5)—(11) were obtained will be given at the Workshop.
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Figure 3: Normalised amplitudes of modes [@,/Qo| against their wavelengths A, /d = 27 /|8d +
2nr| for the case a/d = 1, b/d = 0.5, Bd = 2 with the corresponding wavenumber kd = 1.1681.
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Figure 4: Surface elevation at z = 0, ¢t = 0 for the case ¢/d = 1, b/d = 0.5, fd = 2 with the
corresponding wavenumber kd = 1.1681.
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