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1_INTRODUCTION

For some analyses in infinite water depth, the availability of a series
expansion for the source potential similar to that of John's representation in
finite water depth 1is highly advantageous. For example, providing all the
observational coordinates and the source coordinates can be separated, and the
wave free modes decrease rapidly with the radial distances, this form of source
potential will greatly facilitate the analytical evaluation of the troublesome
free surface integral arising in the study of second order diffraction problems.
This was the original motivation of the present work. An analytical
decomposition of the infinite water depth source potential has been achieved and
is given below. In particular, for source points lying on the free surface the
proposed expression only involves some elementary functions and special functions
and they may be readily evaluated. In view of this, it also suggests that the
first order potential could be similarly expanded on the free surface whereever
the expansion of the source potential is numerically efficient. This point will
be further elaborated below. The present work is also concerned with the
irregular frequencies. It will be shown numerically that now irregular
frequencies can be removed by properly perturbing this expansion and coupling
with the original source potential.

PANSION HE SOURCE POT AL I W

The work follows closely that of Martin!, but some modifications have
been made which considerably increase its domain of validity. By using the same
notation and the definition of the source potential as given in Ref.l, it can be
shown that '

) 1 . .
G (p,a,yip ,a ¥y ) = m§0 7 n 8 (P YiPy1Yy) cosm(a-a )

= mgo jgo % € Ai(P,Y) Wi(po,yo) cosm(a-ao)

In particular, for ( p°2+y02) > ( p2+y2 ), one obtains

0 -ky
Am(p.y) - —nK e I (Ke)

m
0 Ky (1) n e e
Doy = e Vol -2tH, (Ko ) + (-1 ST (Re) - Yp(Ko) ] - r (k)™
y
2p o Kt
-Ky 2 Ly (2ym I = ]
v o B [ =2 rmtdy (= | ac
[ "3/2 2 K 6 (p§+ t2)m+1/2

33




j 220! m ' _(-ko)d
A - _(-KRr) * .
(P Y) 2] T E2 (T Pm+&cos0) j>0
m m
wj(p ;) - Pm+2j(cosﬁo) . K Pm+2j_l(cos00). .
A _m+23+1 23 2] 1>
[o] [o]

Here Sm is the Struve function of order m, and (p,a,y) and (r,9,a) are
cylindrical and spherical coordinates respectively. In order to verify the
validity of the above alternative representation of G _, some numerical results
for the real part of g _are illustrated in table 1.° Comparisons have been
obtained by performing Ma cosine transform of the source potential which is in

turn calculated from 'FINGREEN’. In the evaluation of the infinite series in j,
the summaticn 1is terminated when the relative differences, between three
successive values are less than a prescribed tolerance of 10 . Under this

degree of convergence, it can be seen that the comparisons are very satisfactory.

PPLICATION I - EV TION O F EG

It is well known that one of the crucial parts in the second order
diffraction analysis is the accurate and efficient evaluation of the free surface
integral. For this calculation in finite water depth, it has been found
advantageous to use the procedure (see Ref. 2) of dividing the free surface into
near field and far field regions. While numerical quadrature is employed for the
near field integration, analytical evaluation is performed in the far field by
first integrating explicitly in the azimuth angle. However, it can be shown that
if the <classical version of the source potentail 1is employed, the same
methodology is rather expensive to apply in the case of infinite water depth.
Unless a large domain for the near field integration 1is enclosed, neither the
source nor the first order potential can be accurately expressed in a form which
will facilitate the analytical integration in the far field. Consequently, the
prohibitive numerical effort involved in the evaluation of the free surface
integral appears to be a major obstacle in the analysis of second order problems
in large water depth. It is, however possible to overcome this difficulty by
making use of the expansion discussed above. An important aspect of the
expansion g_ 1is that at y =0, the inconvenience caused by the finite integral
vanishes. gm then becomes’a relatively simple expression and is well suited for
the far field analysis. It also suggests that the first order potential ¢ can be
similarly expanded on the free surface. For illustration, it can be shown that
after making use of Green theorem one obtains the diffraction potential
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where the coefficients A J and B J can be obtained from the following body
integrals in terms of the inciden® potential ¢i.
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In addition, from table 1, it is significant that the infinite series in J
converges very rapidly even when the distance between the observational point and
the source point is relatively small. This property is of course desirable for
reducing the upper bound of the 2D numerical integration area. In view of this
and the possible series expansions of g and ¢, a vremedy for the efficient
evaluation of the free surface integrgl is now possible. The methodology and

formulation of the remaining part of this follows closely that of Ref 2., and
will not be detailed here.

4 APPLICATION IT - REMOVAL OF IRREGULAR FREQUENCIES

It is well known that the solution of the wave body interaction problems
by means of integral equations may break down at a discrete set of irregular
frequencies. These irregular values have no physical significance but correspond
to the eigenvalues of the related interior Dirchlet problem. Various methods
have been proposed to resolve the problem of irregular frequencies. Related work
is the modified integral equation method proposed by Lee?3. This method is
believed to correspond to the distribution of additional singularities on the
body surface. From this point of view, its numerical implementation in the
general higher order boundary element codes presents difficulties, because it
necessitates the use of more sophisticated methods to deal with the strongly
singular integral equation. Ursell* demonstrated analytically how irregular
frequencies may be removed by simply adding a suitable finite series of wave
sources to the classical source potential. That treatment deals with two
dimensional problems but the effectiveness of this method has not yet been
demonstrated for three dimensional bodies of arbitrary geometries. Ursell’s
approach is reexamined in the present note. For simplicity, only the heaving
motion of a unit hemisphere will be considered. Due to axisymmetry, the integral
equation to be solved is
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where R_ is the zero order ring source and n is the normal in the vertical
directidn. This integral equation is then solved by reducing it to a linear
system of equations. Non-dimensional added mass (a,,) and damping (b,.)
coefficients over a range of frequencies are depicted 1in figure 1. Here, %ge
expected difficulty near the first irregular frequency (K=2.56) can be clearly
observed. This difficulty is removed by constructing a new source potential as
follows
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where ¥ © {s defined as in section 2. For a suitable choice of a, it is evident
from figure 1 that the difficulty associated with the first irregular frequency
is removed, and away from it the agreement between the results obtained from the
original source potential (a =0) and the modified source potential 1is very
satisfactory. Thus, it has been shown that when the classical source potential
is properly perturbed, a modified integral equation can be obtained for the same
unknown function: this has been found not to break down over a range of
frequencies associated with the heaving motion of a hemisphere. Nevertheless, it
is clear that much work (both analytical and numerical ) has to be done before
this method could be implemented for the analysis of arbitrary three dimensional
bodies.
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m=3, K=1, p=1, y=0, yo-O
Tabie 1
o, EXPANSTON FINGREEN N apte
Comparisons of g_ at
1.05 1.668653 1.668664 87 different radialmdistance.
1.10 1.214390 1.214393 49 N is the total number of
1.20 0.787739 0.787740 29 j terms used in the
1.50 0.347072 0.347072 15 expansion.
2.00 0.158726 0.158726 10
2.50 0.099302 0.099302 8
3.00 0.068685 0.068685 7
3.50 0.045163 0.045163 6
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5.00 -0.017810 -0.017811 5
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DISCUSSION

Martin: A comment: P. Sayer (Proc.Roy.Soc. A, late 70's) used an
integral-equation method for a heaving, half-immersed circular
cylinder on water of constant finite depth, with the appropriate
G. He proved that you can eliminate all irregular frequencies by
adding a wave source located at the origin to G. This possibility
was suggested by earlier work of Ogilvie & Shin.

Chau: In the present work, the same idea has been employed and

demonstrated numerically that it works equally satisfactory for a
heaving hemisphere.

Ursell: Your method is related to Havelock's, a different expansion
for the wave source was used by Hulme who was able to calculate all
the matrix elements in closed form. Recent work has shown that the
approach of the truncated solution to the exact solution is slower
than we would like; this is associated with the weak singularity at

the free surface. It would be interesting to compare this with the
integral-equation.

Chau: In the present expansion, the observational coordinates and
the source coordinates are completely separated, and this may be
considered as a generalization of the expansions given by Havelock
and Hulme. Also, Hulme's expansion involves the differentiation of
the associated Legendre function with respect to the degree, and
this appears to be difficult to evaluate.
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